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1 Introduction

Welcome to the introduction to LabBench, a system for describing experimental

protocols in a human and machine-readable format that can be used to reduce the

complexity of running experiments. In this guide, we will take you through the

concepts necessary for describing and running experiments, which we will do by

constructing an experiment that can be used to study the relationship between

pain sensitivity and depression, anxiety, and stress.

1.1 LabBench and the LabBench Language

LabBench is a complex tool that is difficult to describe in a few words. One way

to introduce LabBench is with the concept that LabBench is two things that work

together: 1) the LabBench Language and 2) the LabBench Software.

The LabBench Language is designed to specify protocols with terminology and

concepts that scientists are already familiar with when they describe experiments

with more conventional tools, such as writing an experimental protocol in a text

document.

The LabBench Software consists of two programs, the LabBench Designer and

LabBench Runner. The LabBench Designer is used to set up and manage ex-

periments and export data for analysis. The LabBench Runner is used to run

experiments written in the LabBench Language.

It is also helpful to understand what LabBench is not. LabBench is not a system

for analysing data. Today, there is excellent software for the analysis of scientific

data. Python, R, MATLAB, and SPSS are non-exclusive choices for scientific data

analysis. These are all excellent choices for data analysis, and there is no need for

another tool. Consequently, LabBench focuses exclusively on running experiments

and ensuring that data is in an efficient format for later analysis in other 3rd party

analysis software.

1.2 Why we created LabBench

LabBench is motivated by the ever-increasing complexity of research methods

and their dissemination in research papers. A research paper is highly efficient

at disseminating context, hypotheses, and discussion of research results but less

efficient at disseminating research methods. Over the years, we have reproduced

numerous studies from the literature. However, despite the very best efforts of

everyone involved in their publication, we found that it is not uncommon for

descriptions of research methods to be accidentally incomplete in manuscripts. A

second problem comes from the complexity of contemporary research methods.

It is not uncommon for study protocols to require numerous complex steps to
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be taken by the scientist during an experiment. Steps include recording data,

performing analysis/interpretation of these results during the experiment, and

using these results for subsequent steps in the experiment. All of these tasks take

a considerable amount of attention from the researcher.

Both problems can be alleviated by executing studies with a computer system, as

the study must then be described in a machine-readable and executable format.

This ensures that all parameters and methods are wholly specified; otherwise, a

computer cannot execute the study. Furthermore, as the computer must execute

the study, it must have automatic control over all equipment. Thus, all manual

steps that do not require the interpretation or control of the researcher can be

automated. This significantly reduces the complexity of running the study for the

researcher.

Technically, all the building blocks for creating self-contained and automated pro-

tocols are available from the field of computer science. The most essential building

block is a suitable scripting language. Today, open, powerful, and relatively easy-

to-learn scripting languages, such as Python, can be used for scripts to encode pro-

tocols into machine-executable and human-understandable formats. However, the

strength of general-purpose scripting/programming languages is also their weak-

nesses. Because they are general-purpose languages, they are powerful, and basi-

cally, there is nothing you cannot create with them; with sufficient effort, you can

completely automate an experiment. As general-purpose languages, they place no

restrictions on what they can be used for; however, simultaneously, they do not

assist in implementing any task. This leaves the architecture and implementation

details entirely up to the researcher. In practice, this means that even though

the language itself may be relatively easy to learn, a very steep learning curve

must be overcome before implementing even the simplest experimental protocol.

Another problem is disseminating these protocols so that other researchers may

use them. Without standards for their implementation, the protocols are unique

to that specific experiment. This makes it challenging for other researchers to

replicate experiments and extend them.

The problems inherent in general-purpose scripting languages can be alleviated

by designing a domain-specific language (DSL) for protocols that can be extended

with a general-purpose scripting language. A DSL is a language intended to

capture expert knowledge of one specific domain or problem in a form that signif-

icantly simplifies using the language compared to a general-purpose language. In

this case, the purpose of the DSL language is to describe protocols in a standard

way that both humans and machines easily understand. Yet, in a format that is

also flexible and extendable enough that most protocols can be described in this

DSL language.

To fulfil the above aims, we have created a DSL called the LabBench Language for

protocols, particularly neuroscience protocols and an associated protocol runner
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called LabBench for executing these protocols.

1.3 What can LabBench do?

LabBench can do many things on different levels, from simple experiments using

preprogrammed blocks of procedures that can be set up in minutes to highly

complex protocols with advanced scripting and logic.

However, regardless of how you use LabBench, you should expect to:

1. Reduce the researcher’s workload by moving as much of the decision-making

from the experimental session to the study’s planning phase.

2. Reduce the technical competencies required to take advantage of scripted

protocols by eliminating or drastically reducing the amount and complexity

of code required to implement automatic scripting of an experiment.

3. Ensure all data is recorded consistently by removing the save button from

the program. Data are automatically saved according to the protocol for the

study.

4. Ensure that detailed logs are created throughout the experiment by auto-

matically logging every program action during a session. Events outside of

the program can be added to the log by the researcher.

5. Facilitate data analysis by automatically recording all data in a machine-

readable format.

6. Ameliorate dissemination and reproducibility by describing protocols in a si-

multaneous human and machine-readable format that includes the structure,

execution, and parameters of the study.

1.4 Who is LabBench intended for?

To put it as succinctly as possible, LabBench is intended for any scientist who

wants a way to make it easier to run experiments to reduce the change of errors

and increase the reproducibility of their experiments. It is our experience that

you do not need a background in technical sciences, such as computer science, to

use and benefit from LabBench.

LabBench takes an entirely different approach than most contemporary software

for non-technical professionals. No code platforms are everywhere, often accompa-

nied by the statement ”no programming skills are necessary”, which is considered

a quality statement. We will argue that it is the opposite of a quality statement.

All no code software does is provide a graphical representation of code and one that
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provides an additional layer of potential errors and misinterpretations of what the

computer will do. It does not remove code but transforms it into another language

you must learn. A language that has not matured from continuous improvement

and experience stretching back 180 years to the very first programming language

by Ada Lovelace in 1833.

It is our experience that a DSL, like the LabBench Language, is easier to learn than

a visual ”no code” programming environment and that it reduces the complexity of

conventional programming to a level where anyone can reach sufficient proficiency

in the same period as it takes to become truly proficient in a graphical ”no code”

programming environment.

Therefore, we believe that LabBench is for every researcher regardless of back-

ground.

1.5 What do I need to know to use LabBench?

That depends on your ambitions and needs, but LabBench is designed so you can

progress in stages and that you will be able to run relevant research studies at

each stage of proficiency.

In the first stage, a LabBench Protocol Repository is available through the LabBench

Designer and on GitHub. You can install ready-made protocols from this repos-

itory, for example, quantitative sensory testing, perception threshold tracking,

psychophysical research tasks such as the Stroop, Flanker, or Stop-Signal tasks,

and similar research protocols. This will allow you to see what LabBench can do

without having to write any code, and if your need is to run standardised protocols

reproduced from published papers, then that may be all you will need to use and

benefit from LabBench.

The next stage is to develop your protocols using the preprogrammed research

methods with LabBench. You will need to use and understand the LabBench

Language at that stage. Using the LabBench Language consists of writing a text

configuration file for the experiment in a format known as eXtensible Markup

Language (XML). You will also be introduced to the first simple scripting at this

stage. Part of the LabBench Language is that tests can be configured with the re-

sults of previous tests. This can be done by writing mathematical formulae of the

same form as on a calculator in the text configuration file. Accessing the LabBench

Protocol Repository on GitHub can also make this stage significantly more acces-

sible, as it is easier to assemble a protocol from parts of existing protocols than to

write a protocol from scratch.

Going further, preprogrammed research protocols that can be directly configured

by the LabBench Language configuration file can be extended by writing Python

scripts that are called from the configuration code. With this approach, you can
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implement truly advanced protocols. However, you will need to learn a bit of

Python programming. We chose Python as the scripting language for LabBench

as it is an easy-to-learn language that is very mature, for which numerous excellent

textbooks exist. But you do not need to be an expert Python programmer. One

of the advantages of combining Python with the LabBench Language is that it

drastically reduces the amount and complexity of the code required to implement

an experimental paradigm.

2 Overview of how to run a study

Before examining and discussing each element of a LabBench protocol, starting

with a broad overview of all required to run an experiment with LabBench is often

helpful.

The key steps and concepts that are required for any experiment, regardless of

their complexity and scale, are the following:

1. An Experiment Definition File in the LabBench Language must be written.

Depending on the complexity of the study, this may also involve writing

one or more Python scripts that are called from the Experiment Definition

File. Files such as images, instructions, sound files, and similar may also be

included with and used by the Experiment Definition File.

2. The Experiment Definition File and its Python scripts and assets must be

placed in a protocol repository and assigned a unique ID. This ensures that

protocols can be uniquely identified when results are published.

3. An experiment is created with the LabBench Designer program from an

Experiment Definition File in a protocol repository.

4. The experimental protocol is performed using the LabBench Runner pro-

gram.

5. When the experiment has been completed and all the sessions have been

recorded, the data from the experiment is exported in the LabBench Designer

program for analysis in 3rd party data analysis software.

All studies using LabBench will go through this series of steps, only differing in

the complexity and scale of each step.

3 Language essentials

The minimum for running an experiment with LabBench is to write an Experiment

Definition File (*.expx). The Experiment Definition File consists of a definition of
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the experiment and its protocol. The protocol defines the experimental procedures.

The protocol may contain localization of the protocol into different languages and

additional files required by the protocol. Assets can be files such as images for

visual stimuli, text files for instructions to the experimenter or subject, or scripts

that extend the functionality of the built-in tests in LabBench. The Experiment

Definition File also contains information required to run the protocol in a specific

experiment. This includes information about the experimental setup, valid session

IDs, export of data, etc.

The Experiment Definition File is a plain text file, which means any text editor can

be used. The format for these files is based on the eXtensible Markup Language

(XML), a general-purpose markup language that can be used to implement DSL.

Listing 1 provides the structure of an Experiment Definition File:

1 <?xml version="1.0" encoding="UTF -8"?>

2 <experiment xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

3 xsi:schemaLocation="http:// labbench.io https: // labbench.io/

xsd /4.0.0/ experiment.xsd">

4 <subject -validator regex="^S[0 -9]{3}$"

5 advice="Please enter an ID in the form of SXXX ,

where X is a digit" />

6 <experimental -setup >

7 <devices >

8 <!-- Contents omitted for brevity -->

9 </devices >

10 <device -mapping >

11 <!-- Contents omitted for brevity -->

12 </device -mapping >

13 </experimental -setup >

14 <protocol >

15 <languages >

16 <!-- Contents omitted for brevity -->

17 </languages >

18 <defines >

19 <!-- Contents omitted for brevity -->

20 </defines >

21 <tests >

22 <!-- Contents omitted for brevity -->

23 </tests >

24 <assets >

25 <!-- Contents omitted for brevity -->

26 </assets >

27 </protocol >

28 <post -actions >

29 <!-- Contents omitted for brevity -->
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30 </post -actions >

31 </experiment >

Listing 1: Experiment Definition File.

3.1 Syntax

We will now give a brief but complete introduction to what you need to know

about XML for writing Experiment Definition Files. The first line in Listing 1

identifies the file as an XML file and its encoding. All files include this line,

and even though other character encodings exist today, there is little reason to

use other encodings than UTF-8. As a result, the first line is invariant, and the

Experiment Definition Files must always start with this line.

XML documents are built from a hierarchical structure of XML elements. All XML

documents have one root element that may contain nested elements, which, in

turn, can contain more nested elements in an arbitrary deep hierarchical structure.

XML elements consist of a starting tag, a closing tag, and content between these

tags. In Listing 1, the root element is an experiment element, with a starting tag

of <experiment> and a closing tag of </experiment>.

The exception to this rule is self-closing elements. The <subject-validator> is

an example of a self-closing tag, as it is not followed by a </subject-validator>

tag; instead, the starting tag ends with />. Self-content tags allow for a more

concise and for a document that is easier to read. The use of self-closing elements

is widespread in the LabBench Language.

The <experiment> element has other elements as its content: a <subject-validator>,

a <experimental-setup>, a <protocol> element, and a <post-actions> ele-

ment. Their order is significant; some of these elements are optional, but if used,

they must be used in the order given in Listing 1.

XML elements can be adorned with characteristics in the form of XML attributes.

In Listing 1, regex and advice are attributes of the <subject-validator/> el-

ement, which provides a regular expression to validate session IDs and help the

experimenter if a session ID fails this validation. Attributes are in the form of

name="value of the attribute" and are listed after the element’s name and

before the > character or /> character for self-closing elements.

The last XML syntax that may be useful for you are comments. Comments

are text in the file that will be ignored by LabBench and can be used to add

additional documentation to a protocol not supported by the language. No lan-

guage, no matter how domain-specific, can hope to contain all constructs that

are needed to describe its content fully. With comments, additional informa-

tion such as an explanation for the rationale for the design of a protocol, ref-

erences, and similar information can be added to protocols. In Listing 1, the
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Figure 1: Illustration of code completion where the IDE lists valid XML elements.

text <!-- Contents omitted for brevity --> is a comment, and in general,

LabBench will ignore everything written between the <!-- and --> tags.

The above description of the XML format is all the knowledge of XML itself

needed to write Experiment Definition Files. Naturally, one needs significant

additional knowledge of the LabBench Language, such as the correct content of

the elements, etc. However, this knowledge does not need to be rote learning.

The two additional attributes, xmlns:xsi and xsi:schemaLocation, are used to

leverage existing tools from computer science that make rote learning of all the

valid elements and attributes in the LabBench Language unnecessary.

3.2 Development tools

For writing Experiment Definition Files, as well as Python scripts, an Integrated

Development Environment (IDE) makes the process significantly easier due to

code completion. Code completion means that you do not need to remember

which XML elements or attributes are valid at a given place in your definition file.

Instead, tap CTRL + SPACE (for Visual Studio Code) to get a list of valid elements

or attributes Figure 1. Code completion also reduces the need for manual typing,

as you can simply select the required element or attribute and then press enter,

at which point the IDE will complete the code for you without requiring typing.

3.3 Visual Studio Code

To use Visual Studio Code to develop LabBench experiments, first download the

installer from:

• https://code.visualstudio.com/

Then, install the program. However, Visual Studio Code does not support XML

code completion without a suitable editor extension. The Red Hat XML extension

can be recommended to enable XML code completion.

10

https://code.visualstudio.com/


Figure 2: Red Hat XML extension

To install this extension: 1) open Visual Studio Code, 2) choose extensions by

clicking the fifth icon in the leftmost pane in the editor, 3) search for XML and

select the XML extension by Red Hat, and 4) click install. When the extension

has been installed code completion will be available in Visual Studio Code by

pressing CTRL + SPACE.

4 Example protocol

To study the relationship between depression, anxiety and stress and quantitative

sensory testing in the form of cuff pressure algometry, we will need an experiment

that quantifies the depression, anxiety, and stress of the subject with a suitable self-

report instrument, followed by a protocol for cuff pressure algometry that measures

pain detection and tolerance threshold, temporal summation and conditioned pain

modulation.

To quantify depression, anxiety, and stress, we will use the DASS scale. The

DASS scale consists of 42 items that are designed to measure the three related

negative emotional states of depression, anxiety, and stress. Each item consists of

a statement the subject is asked to evaluate on a 4-point Likert scale.

The Aalborg Protocol for Cuff Pressure Algometry will be used for quantitative

sensory testing of pain. This protocol consists of:

1. measurement of the pain detection and tolerance threshold for the dominant

leg,

2. measurement of temporal summation wherein the subject is asked to rate

ten consecutive pressure stimuli,

3. measurement of the pain detection and tolerance threshold for the non-

dominant leg, and finally,
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4. measurement conditioned modulation by measuring the pain detection and

tolerance threshold for the dominant leg while a conditioned pressure stim-

ulus is applied to the non-dominant leg.

As we will need to change the parameters for the Cuff Pressure Algometry protocol

depending on the subject’s dominant side, we will also need to collect additional

information in an initial step in the protocol. This initial step will consist of the

experimenter recording the subjects’ sex, age, dominant side, and whether cuff

pressure algometry can be performed on both legs, only a single leg or not at all.

If cuff pressure algometry cannot be performed or can only be partially performed,

this initial step will also consist of recording the reason for the inability to perform

the full cuff pressure algometry protocol.

5 Tests

LabBench tests are the basic building blocks of a protocol, where each test im-

plements a specific type of experimental procedure that can be configured with

parameters and extended by Python scripts. These tests are the central elements

of the Experiment Definition File, which describes the experimental procedure

that will be performed in the experiment. These procedures are written in the

<tests> </tests> element of the Experiment Definition File, and in the LabBench

Language, experimental procedures are referred to as tests.

One of the tests we will need in our protocol is the <algometry-stimulus-response>

test, which will allow us to obtain a subject’s visual analogue rating of a linearly

increasing pressure stimulus. From these ratings, we can determine the pain de-

tection (PDT) and tolerance (PTT) thresholds; the pain detection threshold is

taken as the pressure at which the subject rated higher than the vas-pdt level,

and the pain tolerance threshold is taken as the pressure at which the subject

stopped the test by pressing a response button.

The definition of this <algometry-stimulus-response> test is shown in Listing 2.

This example consists of elements/attributes common to all tests regardless of

their type and attributes specific to the <algometry-stimulus-response> test. The

<algometry-stimulus-response> test has only test-specific attributes. However,

other types of tests also have test-specific elements. Test-specific elements must

be written below the elements common for all types of tests.

1 <algometry -stimulus -response ID="SR01"

2 name="Stimulus -Response (Cuff 1)"

3 experimental -setup -id="blank"

4 delta -pressure="DeltaPressure"

5 pressure -limit="100"
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6 primary -cuff="func: Setup.StimulatingCuff(tc

)"

7 second -cuff="false"

8 stop -mode="STOP_CRITERION_ON_BUTTON_PRESSED"

9 vas -pdt="VasPDT">

10 <dependencies >

11 <dependency ID="SUBJECT" />

12 </dependencies >

13 <condition expression="SUBJECT[’CLEARING ’] != 0"

14 help="Subject is not cleared for pressure algometry"/>

Listing 2: Example of a LabBench test for determining the pain detection and

tolerance thresholds to cuff pressure stimuli.

The ID, name, and experimental-setup-id are attributes common to all tests

regardless of their type. The ID attribute is used to uniquely identify and reference

the test result of this test from other tests in the protocol. The name attribute

gives the test a human-readable name. This one is used in LabBench Runner

during the experiment to enable researchers to identify the test in the protocol.

The experimental-setup-id is an optional parameter, and it is only required

if the experimental setup contains equipment that can be reconfigured during an

experiment.

5.1 Structure

Tests have more common elements than the example in Listing 2. The attributes

and elements common for all tests are listed in Listing 3.

1 <test -type ID="[Identifier of the test]"

2 Name="[Human understandable name of the test]"

3 experimental -setup -id="[Experiment Setup Configuration

Identifier]">

4 <test -events >

5 <!-- Contents omitted for brevity -->

6 </test -events >

7 <properties >

8 <!-- Contents omitted for brevity -->

9 </properties >

10 <dependencies >

11 <!-- Contents omitted for brevity -->

12 </dependencies >

13 <condition >

14 <!-- Contents omitted for brevity -->

15 </condition >

16
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17 <!-- Additional test -specific elements -->

18 </test -type>

Listing 3: General structure of Labbench tests with the elements and attributes

that are common for all tests regardless of their type..

5.2 Dependencies

The <dependencies> element is used to prevent tests from running if the test

depends on results from tests that have not yet been completed. In our protocol,

we will have an initial <survey> test with ID="SUBJECT" in which the researcher,

in collaboration with the subject, will answer a series of questions to set up the

rest of the experiment.

One of these questions is whether the subject is right or left-handed, which is

used in the “primary-cuff” attribute to automatically select the cuff placed on the

subject’s dominant side. As a result, the test has a dependency on the survey test

(¡dependency ID=”SUBJECT” /¿) and cannot be executed before the survey test

has been completed.

5.3 Exclusions

The second common element that the example contains is the <condition> element.

This element excludes tests from a protocol if they cannot be performed.

For our protocol, we will, in the SUBJECT <survey> test, also determine whether

cuff pressure algometry can be performed on both legs, only on the left or right, or

not at all. If cuff pressure algometry cannot be performed, then all cuff pressure

algometry tests in the protocol will be excluded, but if cuff pressure algometry

can be performed on only one leg, then the tests for pain detection and tolerance

threshold for the dominant side and temporal summation will be performed for

the available leg, but the tests for the non-dominant side and conditional pain

modulation will be excluded.

This type of logic to exclude tests in protocols can be implemented with the

<condition> element that is common for all tests, and thus, exclusion logic can

be implemented for all tests in a protocol regardless of their type.

5.4 Events

The <test-events> element is used to specify Python scripts that are executed

when tests are selected, started, completed, or aborted. This can be used to extend

tests with functionality outside the scope of what the test was originally designed

for.
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Test events are not used in our current protocol with cuff pressure algometry, but to

illustrate their use, an example where the base functionality of a <electrophysiology-

evoked-potentials> test is extended with test events is provided in Listing 4.

1 <electrophysiology -evoked -potentials ID="Cond"

2 name="Conditioning"

3 trigger -update -rate="20000"

4 response -collection="none">

5 <test -events start="func: Functions.Condition(tc)"

6 abort="func: Functions.Stop(tc)"

7 complete="func: Functions.Stop(tc)">

8 <instrument interface="pressure -algometer"

9 name="Algometer" />

10 </test -events >

11

12 <stimulation -pattern time -base="seconds">

13 <uniformly -distributed -sequence iterations="12"

14 Toffset="5"

15 minTperiod="10"

16 maxTperiod="15" />

17 </stimulation -pattern >

18

19 <stimuli order="round -robin">

20 <stimulus name="Stimulus"

21 count="1"

22 intensity="StimIntensity.Intensity">

23 <!-- Stimulus specification omitted for brevity -->

24 </stimulus >

25 </stimuli >

26 </electrophysiology -evoked -potentials >

Listing 4: Example of a test where its base functionality is extended with test

events.

The <electrophysiology-evoked-potentials> test in Listing 4 is intended to generate

evoked potentials by presenting a set of stimuli to the subject according to a

given stimulation pattern. The test is intended to work only with short electrical,

auditory, visual, or tactile stimuli suitable for generating an evoked potential,

which can be used, for example, EEG experiments with the oddball paradigm,

electrically evoked potentials, etc.

One research group wanted to study how electrically evoked potentials are mod-

ulated by a conditioning pressure pain stimulus, which the built-in functionality

of the <electrophysiology-evoked-potentials> cannot do. The built-in functionality

does have any mechanism that provides a way to apply a stimulus for the entire

test duration, as it is only intended for short stimuli that are applied according to
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a stimulation pattern.

In their study, they wanted to use a LabBench CPAR+ device to apply a condi-

tioning pain stimulus while electrically evoked potentials were generated with a

DS7 stimulator. This was made possible with a test event that ran a script start-

ing the conditioning stimulus when the test was started and stopping it when the

test was stopped or aborted. The <test-event> in Listing 4 has three attributes

start, abort, complete that is executed when the test is started, aborted, and

completed, respectively.

These attributes can contain either a single-line Python statement or reference

a function in a Python script. Starting and stopping the pressure stimuli is too

complicated to achieve in a single Python code line. Instead, a Python function

was called to start and stop the stimulation. Using Python functions, and scripting

in general, is first discussed in the section “Scripting”; however, for completeness,

the code for these functions is provided in Listing 5.

1 from Serilog import Log

2 from LabBench.Interface.Instruments.Algometry import *

3

4 def Condition(tc):

5 algometer = tc.Devices.Algometer

6 chan = algometer.Channels [0]

7

8 chan.SetStimulus (1, chan.CreateWaveform ()

9 .Step (0.70 * tc.SR.PTT , 9.9 * 60))

10 algometer.ConfigurePressureOutput (0, ChannelID.CH01)

11 algometer.StartStimulation(AlgometerStopCriterion.

STOP_CRITERION_ON_BUTTON_PRESSED , True)

12

13 Log.Information("Starting conditioning: {intensity}", 0.07 * tc.SR.

PTT)

14 return True

15

16 def Stop(tc):

17 algometer = tc.Devices.Algometer

18 algometer.StopStimulation ()

19 return True

Listing 5: Python functions for conditioning electrical evoked potentials with a

static pressure stimulus.

In the section “Scripting”, we will introduce in detail how Python is used for

scripting protocols and to extend the functionality of LabBench. Consequently,

if you have never programmed in Python, the code in Listing 5 may be new

to you. Nevertheless, the example in Listing 5 may hint that it is defining
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(“def”) two functions, Condition(tc) and Stop(tc), that is intended to start

and stop the pressure stimulus, respectively. What causes these functions to

be called from the <test-event> is that, for example, the start attribute con-

tains func: Functions.Condition(tc). The func: statement is a keyword that

tells LabBench that a Python function must be called, which in this case is the

Condition(tc) function located in the Functions script.

In this case, the test event is used to condition/modulate evoked potentials. How-

ever, as test events are common to all tests, this test event could be inserted into

any other LabBench test. For example, if we wanted to see how the responses

to the DASS scale are influenced by a simultaneous painful stimulus, it could be

inserted into the <survey> test, which we will later use for implementing the DASS

scale. Furthermore, test events do not need to be used for applying a stimulus to

a subject. If we need general code to run when a test starts, we can run it in the

start test event. This could be used, for example, to initialize a random sequence

of visual stimuli or similar, or if we want to add custom information to the log

system, then that can also be accomplished with test events.

5.5 Properties

The last test element we are yet to discuss is the <properties> element. The

<properties> element is an optional element that can be used for modifying the

execution of tests. Listing 6 provides an overview of all possible test properties

and their attributes.

1 <properties >

2 <auto -start value="true" />

3 <extended -data -collection value="true"/>

4 <instructions default -instructions=""

5 instructions=""

6 start -instruction=""

7 override -results="true"/>

8 <next ID=""/>

9 <annotations >

10 <!-- Contents omitted for brevity -->

11 </annotations >

12 </properties >

Listing 6: Overview of test properties.

The <auto-start> property can be used to chain tests. LabBench will automatically

select the test in the protocol when a test is completed. Setting the value attribute

to true on the <auto-start> attribute will cause the test to start automatically

when it is selected after the previous test has been completed. The effect of the

<extended-data-collection> property depends on the type of test. Certain tests
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support an extended collection of data that will be enabled if this property is

true.

All tests support displaying information to the researcher when they are selected

and not running. The <instructions> element is used to enable the showing of

instructions to the researcher. If used, the default-instruction is mandatory

and must provide the ID of the information file to display to the researcher. This

instruction file is used if the test is blocked due to an unsatisfied dependency, has

been excluded, or if the instructions attribute is not specified. If the instruction

attribute is specified, then the information file specified by this attribute will be

used when the test can run. The difference between the default-instruction

and instruction attribute is that the latter can be scripted, while the former

cannot.

In our protocol, we could use the instruction attribute to select different instruc-

tions to present to the experimenter depending on whether the subject is right or

left-handed. The override-results attribute controls whether the results of a

test or its instructions will be shown when the test is completed. By default,

selecting a completed test will display its results; however, this behaviour can be

overridden by the override-results attribute to true, which will always display

instructions when the test has been completed. The start-instruction prop-

erty can be used to modify the instruction given to the researcher when a test is

selected and can start. By default, LabBench will display “Test is ready to start”

when a test can be started, but if the start-instruction attribute is used, then

this can be used to display a custom message. As this attribute can be scripted,

this message can also depend on previous results recorded in the protocol.

The <next> element is included to support the logical flow of the protocol when

tests have been excluded. By default, when a test is completed, LabBench will

select the next test in the protocol unless the <next> element is used for the

completed test. If the <next> element is used, its value must be the ID of the

next test to select when the test is completed and because this property can be

scripted, it is possible to select this ID at runtime depending on the previous

results in the protocol. Consequently, if the results of, for example, a <survey>

test have caused a test to be excluded, then the <next> element can be used

to select the correct next test in the protocol instead of the test that has been

excluded.

The <annotation> property does not influence how a test is executed. Instead,

it can add information to the test that will be exported with the results. This

can be used, for example, if a strength-duration curve is determined to specify

the duration of the stimuli used in the test. Adding numbers, Boolean values,

text strings, and a list of numbers as annotations to a test is possible. Listing 7

provides an example of all possible test annotations.

1 <annotations >
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2 <number name="ChargeBalRatio"

3 value="4"/>

4 <bool name="ChargeBalanced"

5 value="true"/>

6 <string name="string" value="This is the value of the text string"/>

7 <numbers name="Ts">

8 <number value="0.1"/>

9 <number value="0.2"/>

10 <number value="0.5"/>

11 <number value="1.0"/>

12 </numbers >

13 </annotations >

Listing 7: Example with all possible types of test annotations.

Annotations can also be added programmatically to test results from a function

defined in a Python script. This can be used to add data from, for example, the

start test event.

6 Localization

Localization refers to adapting software to suit a specific region or culture, typically

involving language, cultural norms, and regional preferences. Most importantly,

this involves that subject-facing text is displayed in a language that the subject

understands, but it may also involve customizing other aspects of the protocol,

such as formats for dates, numbers, currency, and similar culture dependent items.

Localization goes beyond mere translation and often requires a deep understanding

of the subject’s culture. For example, localizing questionnaires goes beyond a

translation of the text in the questionnaire but also requires a validation that the

translated text holds the same meaning to the subject as the original language of

the questionnaire to native speakers.

Internationalization, also often abbreviated as i18n, is the process of designing

protocols in a way that facilitates adapting protocols to different cultures by sep-

arating culture-dependent content from the code and structure of the protocol.

Protocols provide a mechanism for i18n in the form of the <languages> element

that can be specified in protocols, for example:

1 <languages >

2 <language code="en"

3 name="English"/>

4 <language code="da"

5 name="Danish"/>
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6 </languages >

Listing 8: Example of a languages element.

Specifying a <languages> element in a protocol creates a Language define (see

section Defines) that can be used in calculated parameters to return different

values depending on the language/culture selected by the experimenter when a

session is started, and it will be possible to use different protocol assets depending

on the selected language/culture.

LabBench does not enforce any conventions for language codes. However, it is

highly recommended that language codes from the “ISO 639-1” standard be used,

as there is considerable work involved in localizing, for example, questionnaires,

and by using standardized codes, it is possible to reuse a questionnaire imple-

mented for one study in other studies that require the same questionnaire.

Language codes for the ISO-639-1 standard can be found on the net by searching

for “ISO 639-1 codes,” which are extensively used and commonly available. Please

note that in the example above, only the language code was specified for English.

It is also possible to specify the culture; for example, code=”en-gb” would have

been the code for English as spoken in the United Kingdom.

6.1 Assets

Assets in the form of files can be included in the protocols: Python scripts, docu-

ments, images, and similar files. Assets that are included in a protocol are specified

within the <assets> tag:

1 <assets >

2 <file -asset id="TEXT" file="TEXT_EN.py">

3 <language code="da" file="TEXT_DA.py"/>

4 </file -asset >

5 <file -asset id="Calculations" file="Calculations.py" />

6 <file -asset id="INSTRUCTIONS" file="Instructions.rtf" />

7 <file -asset id="Setup" file="Setup.py" />

8 </assets >

Listing 9: Example of assets that are included in a protocol

Each asset has two mandatory attributes: an id attribute, used to identify the

asset within the Experiment Definition File, and a file attribute with the file

name to use.

The assets in Listing 9 contain both localized and non-localized assets. Localized

assets have additional <language> elements within them, which makes it possible

to use different files depending on which language/culture has been selected by

the experimenter. Localization of assets is why the file name is not used as the
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identifier (id) of the asset, as if it were, then it would not have been possible to use

different files depending on the selected language/culture. The way localization

works with assets is that LabBench will first look up if an asset has a <language>

element for the selected language/culture and will use that file if found. If no

<language> element is found for the selected language, then the file specified on

the <file-asset> element will be used and thus is the default file if no language

element is found.

The LabBench Language supports the following types of assets:

• Python Scripts (*.py): Functions within Python scripts can be called

from the Experiment Definition File to extend the base functionality of the

language and to implement more complex logic and calculations in experi-

ments.

• Markdown Text (*.md): Is used to format text that are displayed during

an experiment.

• Plain Text (*.txt): Is used for text in experiments.

• Rich Text Format (*.rtf): Rich text format documents can be authored

in Word or similar programs and can contain both text, headings, tables,

images, etc. They are used for instructions that can be displayed to either

the experimenter or subject.

• Portable Network Graphics (*.png): Is used for displays within the

program or for images that are displayed to subjects. For example, they can

be used for cues that are displayed to the subjects in Stroop, Flanker tasks,

and similar psychophysical research paradigms.

• Zip Files (*.zip): Is used as a container for all other types of assets.

Technically, it is possible but not recommended to have zip files within zip

files.

• Wave Files (*.wav): Is used for auditory stimuli for, for example auditory

evoked potentials.

• Comma Separated Values (*.csv): General data files that can be used

to import data into experiments.

• Scalable Vector Graphics (*.svg): Can be used for visual stimuli.
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7 Scripting

7.1 Attributes

Throughout this guide, we have already used attributes extensively. For example,

in Listing 7, attributes provide the data for the test annotations. Each attribute

has a name and is assigned a value in the form of:

name_of_attribute="value of attribute".

An attribute also has a type; for example, the value attribute of the number

element in Listing 9 is of type float that represents rational numbers of the form

0.1, 1.2, etc. The LabBench Language has simple types for integers, floats (rational

numbers), Boolean values, text strings, and value lists (enums).

7.2 Simple types

7.2.1 Integers

An integer is a whole number, meaning it is a number that does not have any

fractional or decimal parts. Integers can be either positive, negative, or zero.

They represent values that can be counted or measured in whole units without

fractions or decimals.

Example: 1, 2, 3, 4, -10

7.2.2 Floating numbers

A float represents a rational number, which is a number that can be expressed as

the quotient or fraction of two integers, where the numerator is an integer and the

denominator is a non-zero integer.

Example: 2.8, -1.2, 0.1

7.2.3 Text

Text variables, often referred to as a ”string variable,” are data types used to store

and manipulate sequences of characters.

Example: ’This is text string’

7.2.4 Boolean

Boolean variables can only hold one of two possible values: ”true” or ”false.” v

Example: true, false (and nothing else)
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7.2.5 Enumerations

An enum, short for ”enumeration,” is a data type in computer programming that

defines a set of named constant values. Enumerations create a collection of sym-

bolic names (enumerators) that represent a finite list of related, distinct values or

options.

Example: single-sample

7.3 Data structures

Besides the simple types in table TBD there are also types for structuring data.

Data can be structured as lists (array), dictionaries (dict), and structures (struct).

7.3.1 Arrays

An array holds a list of values that are accessed by their index in the list. Each

of the values in the array can be either a simple type or another structured type.

Nomenclature: array<type>

Examples: intensity[2], answer[3]

7.3.2 Dictionaries

A dictionary holds a set of (key, value) pairs where elements in the set is accessed

by their key, and the value can be either a simple type or another structured type.

The key is always a simple type, most often a text type.

Nomenclature: dictionary<key_type, value_type>

Examples: SETUP[‘RECT’]

7.3.3 Structures

A set of values where each value in the set is named. Each of the values in the

array can be either a simple type or another structured type.

Nomenclature: struct(name1<type>,name2<type>,...,nameN<type>)

Examples: SR.PTT, SR.PDT

7.4 Calculated attributes

Most attributes are calculated, meaning they can be specified in a protocol with a

mathematical expression. Calculated attributes in a protocol allow the LabBench
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Language to automate manual tasks during an experiment. As attributes configure

tests, it is possible to configure tests from the results of previous tests in the

protocol.

The following example illustrates this. In our protocol on the relationship between

DASS scores and pain sensitivity, we wish to determine the temporal summation

of pressure stimuli. The intensity of the pressure stimuli must be set to 70%

of the Pain Tolerance Threshold (PTT) to linearly increasing pressure, which is

determined by the ¡algometry-stimulus-response¿ test with ID=”SR01”. To do

this, we will set the pressure of the stimuli (pressure-stimulate) in the ¡algometry-

temporal-summation¿ test to:

pressure-stimulate="0.7 * SR01.PTT"

We can do this because the text that is between the “ ” quotes of a calculated

attribute is a single-line Python statement, which gets evaluated by the LabBench

Runner, and when the code is specified in the Experiment Definition File, this

is termed as a single-line calculated attribute, in contrast to a script calculated

attribute that is evaluated by calling a Python function in a script. A second rea-

son why calculated attributes can automate manual tasks is that from calculated

parameters, we have access to a set of variables:

Variables Name Description

Results of tests

in the protocol

The ID of the test Results of tests in the protocol.

These variables are available to

all calculated attributes except at-

tributes of defines.

Examples:

pressure-stimulate=”0.7 *

SR01.PTT”

conditional-pressure=”0.7 *

SR02.PTT”
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Instruments ID within the test of

the instrument.

Instruments that are used by the

test. These variables are only

available for calculated attributes of

tests. Knowing their names re-

quires looking up their names in

the LabBench Language Specifica-

tion [REF] to which Instruments

each type of test requires and their

ID within that specific type of test.

Example:

Imax=”Stimulator.Imax”

Defines ID of the define Defines holds values used in multi-

ple calculated attributes in a proto-

col. They are named after their ID

in the list of defines.

Example:

delta-pressure=”DeltaPressure”

Mathematical

functions

exp, round, log,

log10, sin, sinh,

asin, cos, cosh, tan,

tanh, abs, sqrt,

max, min, pow

Common mathematical functions.

Examples:

exp(10)

round(1.67)

min(4 * SETUP[‘RECT’], Stimula-

tor.Imax)

Free parameter x Only used tests for which a response

is determined for a change in a free

parameter. For example, the calcu-

lated attributes for a stimulus in a

threshold estimation test will have

access to the free parameter x.

Example:

Is=”x”

Is=”-x/5”
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Language Language If the experiment is localized with

a ¡languages¿ element, then the se-

lected language will be available as a

variable named Language.

Example:

Language == ‘en’

Session ID SESSION NAME ID of the current session. The type

of the variable is text.

Session time SESSION TIME Time that the current session was

started. The type of the variable is

text.

A short note on nomenclature. Throughout the LabBench documentation, it is

necessary to specify the types of attributes. A calculated attribute will be required

to return either 1) a simple type, 2) a list, dictionary, or structure of simple types,

or 3) a value of any type.

The calculated attribute is specified as calculated<type>, meaning that:

• calculated<int> is a calculated parameter that must return an integer,

and

• calculated<list<float>> is a calculated parameter that must return a list

of floats and

• calculated<any> is a calculated attribute can return any type.

7.5 Dynamic text attributes

Text is used extensively in Experiment Definition Files and may be needed to

customize the text based on either the localization of the protocol or results that

have been recorded. These could be achieved with calculated attributes. However,

in many cases, only literal text strings are needed. If calculated attributes were

used directly for text attributes, then all text attributes would need to be specified

as attribute-name=”’test’” because the value of the attribute would be a Python

statement and, within Python, text is specified with single quotes (i.e.‘example

text’). Using Python syntax for all the text that needs to be customized would

be an inconvenience and a source of error because it would be very easy to forget

the single quotes ’ within the double quotes “.
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To solve this problem, the LabBench Language has a special calculated attribute

type called dynamic text, which allows literal text to be specified as:

instruction="What is the reason for skipping the pressure tests?"

But if a dynamic: keyword is added before the text, then it will be evaluated as

a calculated¡text¿ attribute:

instruction="dynamic: Text[’I01’]"

Which, in the above example, returns the text that is stored in the dictionary

Text under the key ‘I01’.

7.6 Defines

Often, you will need to use the same value for a parameter for multiple attributes

in an Experiment Definition File. When the same values are repeated in multiple

places, it is a common error that this value will be wrong in one or more places.

A common principle in programming is the “Don’t Repeat Yourself” (DRY) prin-

ciple. The DRY principle states that if you need the same information at multiple

sites, a mechanism must be available to avoid that.

To avoid this problem, the LabBench Language allows you to define variables in a

protocol that can be used in subsequent definitions, tests, and post-session actions.

Each define has two attributes: 1) a name attribute that is the name the variable

can be referred to in calculated attributes and scripts, and 2) its value. Listing 10

provides an example of how three variables can be defined:

1 <defines >

2 <define name="DeltaPressure" value="1"/>

3 <define name="VasPDT" value="0.1"/>

4 <define name="Text" value="func: TEXT.CreateText(tc)"/>

5 </defines >

Listing 10: The defines that are used in our protocol.

The variables defined in the <defines> element can subsequently be used in de-

fines, tests, and post-session actions. Below is an example of how the DeltaPressure

variable is used in a <algometry-stimulus-response> test:

1 <algometry -stimulus -response ID="SR01"

2 name="Stimulus -Response (Cuff 1)"

3 experimental -setup -id="blank"

4 delta -pressure="DeltaPressure"

5 pressure -limit="100"

6 primary -cuff="func: Setup.StimulatingCuff(tc

)"

7 second -cuff="false"
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8 stop -mode="STOP_CRITERION_ON_BUTTON_PRESSED"

9 vas -pdt="VasPDT">

10 <!-- Content omitted for brevity -->

11 </algometry -stimulus -response >

Listing 11: Example of test attributes where the defines are used.

7.7 Scripts

Single-line calculated attributes allow for simple calculations of attributes but fall

short of implementing complex logic or extending the base functionality of tests.

For more complex calculations and actions, you will need to use a Python script

called from the Experiment Definition File.

7.7.1 Calling a script

LabBench provides access to a full Python scripting engine with the ability to use

the Python standard library. This access makes it possible to call functions defined

in a script from calculated attributes. Below is an example where a function is

called to set which cuff to use as the primary cuff in an ¡algometry-stimulus-

response¿ test:

primary-cuff="func: Setup.StimulatingCuff(tc)"

The keyword func: tells LabBench to call a function in a Python script instead of

treating it as a single-line calculated attribute. When the value of the calculated

attribute starts with this keyword, it will require that the rest of the line is of the

form:

[ID of Script].[Function Name](tc), or

[ID of Script].[Function Name](tc,x).

The ID of the script is the ID of the script assigned to it in its <file-asset> element

in the <assets> section of the protocol.

7.7.2 Defining functions

The StimulatingCuff function is defined in a script included in the Experiment

Definition File that is implemented as:

1 def StimulatingCuff(tc):

2 retValue = 0

3

4 if tc.SUBJECT[’CLEARING ’] == 3: # Both sides cleared

5 if tc.SUBJECT[’HAND’] == 1: # Right hand is dominant
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6 retValue = 2

7 elif tc.SUBJECT[’HAND’] == 2: # Left hand is dominant

8 retValue = 1

9 else: # Both hands are dominant

10 retValue = 2

11 elif tc.SUBJECT[’CLEARING ’] == 2: # Left side cleared

12 retValue = 1

13 elif tc.SUBJECT[’CLEARING ’] == 1: # Right side cleared

14 retValue = 2

15

16 return retValue;

Listing 12: Definition of a function that can be called by LabBench.

This defines a function that must be called with one parameter, the test con-

text (tc), and returns an integer. As this function is used for the calculated¡int¿

primary-cuff attribute of the <algometry-stimulus-response> this will control which

cuff will be inflated by the test based on the handedness of the subject and whether

the subject is cleared for pressure algometry on both sides, the right or left side.

Since functions are always called from calculated attributes, all functions must

return the correct type for the calculated attribute from which they are called.

Returning the wrong type may result in an error when the experiment is performed.

7.7.3 Test context

For single-line calculated attributes, results, defines, and instruments can be used

from the single-line statement as individual variables; however, for script calcu-

lated attributes, these variables and more are accessible through the Test Context.

When the function is called, the test context (tc) is always passed as a parameter

to the function, followed by the free parameter “x” if that variable is available to

the calculated attribute.

The test context is a struct variable that gives access to the following variables:

Variable Description Access

defines Defines from the

<defines> element

in the <protocol>.

Each define is a variable in the tc

struct named by their id attribute in

the <define> element.

Example: tc.DeltaPressure
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results Results from each

test in the protocol.

Each result is a variable in the tc

struct named by their id attribute in

the <test> element.

Example:

tc.SUBJECT[’CLEARING’] (the

result from the ‘CLEARING’ ques-

tion in the questionnaire with

id=”SUBJECT”.

parameters Parameters added

by tests that make

it easier to configure

the tests based on

other parts of its

configuration.

Each test-specific parameter is a vari-

able in the tc struct with a name au-

tomatically assigned by the test.

Example:

tc.NumberOfStimuli (the number

of stimuli in the stimulus set of an

<psychophysics-evoked-potentials>

test.

devices Instruments that are

used by the test.

These instruments are available

through a Devices variable in the tc

structure. This Device variable is it-

self a struct where each instrument

is named by the name it is identified

within the test.

Examples:

tc.Devices.Stimulator

tc.Devices.Trigger

tc.Devices.Display

assets Assets from the

<assets> element

in the Experiment

Definition file.

Assets are available through a Assets

variable ni the tc structure. This As-

sets variable is itself a struct where

each Asset is named by its id at-

tribute in its ¡file-asset¿ element.

Example:

tc.Assets.Images
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Language If the experiment

is localized the se-

lected Language will

be available.

The selected language is available as

a variable named Language in the tc

struct.

Example:

tc.Language

Session ID The ID of the ses-

sion.

The session ID is available as a vari-

able named SESSION_NAME in the tc

struct.

Example:

tc.SESSION_NAME

Session time The time the session

was started.

The session starting is available as a

variable named SESSION_TIME in the

tc struct.

Example:

tc.SESSION_TIME

As variables cannot have the same name, it will be an error to give defines and tests

the same ID, and it must be ensured that the IDs of defines, and tests are not the

same as parameters and devices added automatically by the tests. As the names of

parameters and devices are constant and given by the tests, there might be IDs that

cannot be used based on which tests are included in the protocol. For example,

the ¡psychophysics-threshold-estimation¿ test will add its Stimulator and Trigger

devices to the test context, and this implies that defines and tests cannot have

Stimulator or Trigger as their ID when the <psychophysics-threshold-estimation>

test is used.

8 Experimental setups

8.1 Instruments

Each test in a protocol may require a set of instruments to carry out their exper-

imental procedure. Instruments are abstractions over functionality provided by

research devices that define the capabilities of a generalized class of devices.

For example, for a stimulus-response test in cuff pressure algometry, you will need

an IPressureAlgometer and an IRatingScale instrument. The IPressureAlgometer

is for the stimulus-response test used to provide a linearly increasing pressure, and

the IRatingScale instrument is used by the subject to rate the pain and to stop
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the stimulation when the Pain Tolerance Threshold (PTT) is reached. However,

the IPressureAlgometer is not tied to a specific pressure algometry device; instead,

it defines what LabBench expects all pressure algometers to be capable of, and

today the IPressureAlgometer instrument is provided by two pressure algometers:

the Nocitech CPAR and LabBench CPAR+ devices.

Using Instruments in tests instead of concrete devices makes it easier to add new

research devices to LabBench. For example, currently, there two types of Cuff

Pressure Algometry devices available, where the Nocitech CPAR devices predates

the LabBench CPAR+. The CPAR+ offers better performance than the CPAR

device and has a trigger system; however, the two devices are largely functionally

equivalent. Without Instruments, there would have been two sets of identical

tests, one set for the CPAR device, and another set for the CPAR+ device. With

Instruments, there is no need to implement a second identical set of tests for the

CPAR+ device; all that was required for the CPAR+ device to be used in the

tests that were originally intended for the CPAR device was to implement the

IPressureAlgometer interface, which greatly reduced the amount of work required

to add this new device to LabBench.

The same mechanism can be used to add custom-designed devices to LabBench

by identifying Instruments that are provided by the device and implementing a

custom LabBench Instrument Driver that implements these Instruments.

8.2 Devices

A specific research device typically also implements multiple instruments. For

example, an IRatingScale instrument is built into both the Nocitech CPAR and

LabBench CPAR+ devices. Consequently, for cuff pressure algometry tests, you

do not need a separate device providing the IRatingScale instrument because this

is built into and provided by these devices in addition to the IPressureAlgometer

instrument.

Devices are actual research devices such as a CPAR+ device or a NI DAQmx card.

When an Experimental Definition File is written the ¡experimental-setup¿ element

contains two nested elements the ¡devices¿ and ¡device-mapping¿ elements.

1 <experimental -setup >

2 <devices >

3 <!-- Research devices used in the experimental setup -->

4 </devices >

5 <device -mapping >

6 <!-- Assignment of devices to instruments required by the tests

in the protocol -->

7 </device -mapping >
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8 </experimental -setup >

Listing 13: Structure of experimental setup definitions.

The ¡devices¿ element list which devices are required for the experiment and spec-

ifies their configuration, whereas the ¡device-mapping¿ assigns these devices to the

instruments that are required for each test. All devices required by a protocol is

listed in the ¡devices¿ as nested elements. These elements assign an ID that is

used to identify the device when they are mapped to the Instruments required by

tests in the ¡device-mapping¿ element, and they also configure the devices for the

experiment.

In our experiment on the relation between DASS scores and pain sensitivity, we

will need the subject to answer the DASS questionnaire, which they can do with a

joystick. This joystick must be assigned to the ¡meta-survey¿ test that implements

the DASS questionnaire and it must be configured with the button actions that is

required for the answers. Below it is demonstrated how the Joystick is configured

in the protocol:

1 <joystick id="joystick">

2 <map experimental -setup -id="survey">

3 <button -assignment code="1" button="up" label="Up"/>

4 <button -assignment code="2" button="increase" label="Increase"/>

5 <button -assignment code="4" button="down" label="Down"/>

6 <button -assignment code="8" button="decrease" label="Decrease"/>

7 <button -assignment code="16" button="previous" label="Previous"/>

8 <button -assignment code="64" button="previous" label="Previous"/>

9 <button -assignment code="32" button="next" label="Next"/>

10 <button -assignment code="128" button="next" label="Next"/>

11 </map>

12 <map experimental -setup -id="blank">

13 </map>

14 </joystick >

Listing 14: Joystick configuration.

The ¡joystick¿ element in Listing [joystickconfiguration.xml] contains one attribute

id, which is used to map the device in the ¡device-mapping¿ element to the IButton

instrument required by the ¡meta-survey¿ tests. The rest of the elements within

the ¡joystick¿ are elements that are specific to the configuration of the Joystick de-

vice. Configuring a Joystick device consists of assigning a button actions (button)

to physical buttons (code) on the joystick, and optionally giving them (labels)

that may later aid in the analysis of the data. Technically, this is not helpful

for the results of ¡meta-survey¿ tests; however, it is included in the example for

completeness.

You may note that there is more than one button map and that each is identi-
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fied by an experimental-setup-id attribute. Different tests may require different

configurations of the devices in the experimental setup. This is implemented with

the experiment-setup-id attribute, which in this case is used to define two button

maps; one that will be active when the DASS questionnaire is active, and another

empty button map that will be active for all the other tests in the protocol. All

tests can be defined with an experimental-setup-id that will be activated when the

test is selected in the protocol.

The Experiment Definition File does not, however, specify the actual physical

devices that are in your laboratory. The reason for this is that the same experiment

may be performed at multiple sites, and consequently, the Experiment Definition

File cannot know which devices are present. Instead, when an experiment is added

to a test site, physical devices are assigned by LabBench Designer to the devices

in the ¡devices¿ element.

8.3 Device assignments

The ¡devices¿ elements specify and configure the research devices that are used in

the experiment, but it does not configure which devices are used in the tests in the

protocol. Each test will require a set of Instruments to perform their experimental

procedures. In our experiment, the tests require the following Instruments:

Test Name Function

<meta-survey> Response Is used by the subject

to answer the question-

naire.

Display Is used to display the

questionnaire to the sub-

ject.

<algometry-stimulus-response> Algometer Is used for applying the

pressure stimuli.

<algometry-temporal-

summation>

Algometer Is used for applying the

pressure stimuli.

<algometry-conditioned-pain-

modulation>

Algometer Is used for applying the

pressure stimuli.

The names of the required instruments, in this case Response, Display, and Al-

gometer are determined by the tests, which names that must be assigned a device

from the ¡devices¿ element can be looked up in the LabBench Language Specifi-

cation. Each device that is assigned to an Instrument, required by a test, must

implement the required Instrument for that name. Assigning a device that does

not implement the required Instrument will result in an error that will prevent

the experiment from being run by the LabBench interpreter.
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In our case, devices are assigned with the following ¡device-mapping¿ element:

1 <device -mapping >

2 <device -assignment test -type="meta -survey"

3 instrument -name="Response"

4 device -id="joystick" />

5 <device -assignment test -type="meta -survey"

6 instrument -name="Display"

7 device -id="display.survey" />

8 <device -assignment test -type="algometry -stimulus -response"

9 instrument -name="Algometer"

10 device -id="cpar" />

11 <device -assignment test -type="algometry -temporal -summation"

12 instrument -name="Algometer"

13 device -id="cpar" />

14 <device -assignment test -type="algometry -conditioned -pain -modulation"

15 instrument -name="Algometer"

16 device -id="cpar" />

17 </device -mapping >

Listing 15: Mapping of devices to Instruments required by tests in the protocol.

Each mapping of a device to an Instrument is done with a ¡device-assignment¿

element, where the device-id is the id of the device from the ¡devices¿ element,

instrument-name is the name of the Instrument from test, and test-type is the

type of test that requires the Instrument. You may note from Listing [device-

mapping.xml] that one of the assigned devices is identified by [root device].[sub

device]. Devices may have sub-devices – in our protocol, the display device has

two sub-devices; 1) an ISurvey device (id = “survey”), and 2) an IImageDisplay

device (id = “image”). They cannot be active at the same time, the display will

either work as an ISurvey instrument, or an IImageDisplay instrument, depending

on which experimental-setup-id has been specified by the currently selected test.

Assigning an experimental-setup-id that the IImageDisplay to be active when the

DASS questionnaire expects an ISurvey device will result in an error.

In the device mapping in Listing [device-mapping.xml] only the type of test is

specified (test-type), which means that devices are assigned to all tests of a given

type. This is possible because we have a relatively simple protocol where all

tests of a given type are used for purposes that do not conflict with each other.

For example, we have two ¡meta-survey¿ tests that all get assigned a Response

and Display instrument, even though only the ¡meta-survey¿ test for the DASS

questionnaire will use these instruments. However, this does not conflict with

the purpose of these two tests and will not result in an error while running the

experiment. Assigning a device to an Instrument name is never an error, it is only

an error to not assigning a device to an Instrument name required by a test.
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The simple mapping of a given device to all tests of a given type is possible

for our experiment, but there are experiments where this simple mapping breaks

down and cannot be used. One example of a protocol that required a more specific

mapping was an experiment where auditory and tactile sensitivity was determined

for children living with autism. In that case, both the auditory and vibrotactile

sensitivity was determined by the same type of test, an <psychophysics-threshold-

estimation> test that requires an IAnalogGenerator instrument named Stimulator

to be assigned in the <device-mapping>. In the experiment, a sound card and an

EA Tactor Device were used to study the auditory and vibrotactile sensitivity,

respectively. Both devices implement the IAnalogGenerator instrument, and thus

both can be used by the <psychophysics-threshold-estimation> test to determine

auditory and vibrotactile thresholds. However, since both thresholds are deter-

mined by the same type of test, assigning both devices to the Stimulator name

would result in a conflict. For that situation, it is possible to specify both a test-

type and test-id on the ¡device-assignment¿ elements. When a test-id is specified,

the device will be assigned only to one specific test with the given test-id. With

this mechanism it is possible to specify that the test for the auditory thresholds

will be using the sound card and the test for the vibrotactile thresholds will be

using the EA Tactor Device. The ¡device-mapping¿ element for this mapping is

shown below as an example:

1 <device -mapping >

2 <device -assignment test -type="psychophysics -threshold -estimation"

3 test -id="TA1"

4 instrument -name="Stimulator"

5 device -id="sound" />

6 <device -assignment test -type="psychophysics -threshold -estimation"

7 test -id="TV1"

8 instrument -name="Stimulator"

9 device -id="tactor" />

10

11 <!-- Other required mapping has been omitted for brevity -->

12 </device -mapping >

Listing 16: Device mapping where devices are mapped the Stimulator instrument

required by the psychophysics-threshold-estimation test.

9 Sessions

Sessions are central to how data is recorded and stored. Running an experiment

with LabBench consists of running a series of sessions that each is identified by

an ID. During each session, the tests defined in the protocol are executed.
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9.1 Session identifiers

To ensure valid session IDs, it is possible to specify their validation in the Ex-

periment Definition File with the <subject-validator> element. Session ID are

validated with a regular expression that can be specified by the regex attribute

of the <subject-validator> element. The <subject-validator> also has an advice

attribute with text that will be displayed to the researcher if they enter an invalid

ID. This attribute can be used to provide help to the researcher on what is a valid

session ID in the experiment.

A regular expression is a versatile pattern-matching language for string manipu-

lation tasks like searching, matching, and extracting information from text data.

It’s a sequence of characters that defines a search pattern. They provide a con-

cise and flexible way to describe and match complex patterns within strings. In

LabBench, it is used to validate session IDs by checking if the entered ID matches

the regular expression. If there is a match the ID is valid.

Below is an example of a <subject-validator> that will ensure that session IDs are

in the form “Sxxx” where x is a digit from 0-9:

1 <subject -validator regex="^S[0 -9]{3}$"

2 advice="Please enter an ID in the form of SXXX , where

X is a digit" />

Listing 17: Validation of session IDs.

This regular expression encodes the following rules:

1. ^: is the start of the string.

2. S: The string must start with the letter S.

3. [0-9]: Digits from 0-9.

4. {3}: The letter S must be followed by precisely three digits.

5. $: is the end of the string, meaning there cannot be any whitespace for

letters after the three digits.

A full tutorial on regular expressions is beyond the scope of this introduction. Reg-

ular expressions are widespread and there are numerous excellent tutorials on the

net for learning regular expressions, as well as online tools, such as regex101.com,

that can greatly help in developing and testing regular expressions that can be

used to validate session IDs.
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9.2 Post-session actions

All data will always be saved during the session in an internal database from

which the full dataset for all sessions can always later be exported into a single

file. Post-session actions make it additionally possible to perform tasks when a

session is completed. Currently, there exists post-session actions for exporting data

in Jave Script Object Notation (JSON) (*.json), MATLAB (*.mat), and Comma-

Separated-Values (*.csv) formats. Consequently, post-session actions also provide

a way to save data automatically to a secure location, such as for example a folder

in a network share.

Post-session actions for exporting to JSON and MATLAB formats are simple and

only requires a location and filename to which the data is saved. The post-session-

action for exporting to the CSV format is considerably more powerful and allows

for pre-processing to be performed in the export, which can make subsequent

data analysis easier and faster. This ability comes from a limitation of the CSV

format. With JSON and MATLAB formats it is easy to export everything that

was recorded during the session to a single file, however, the CSV format is not

suitable for large data sets and instead, you must select which data points you

need to be written to the CSV file. This is implemented so that the post-session

action for CSV exports allows you to define a set of data points to be exported

each is specified as a calculated attribute. Since the data points are specified by

calculated attributes a data analysis for each of these data points, and thus makes

it possible to preprocess the results before they are analysed in 3rd party data

analysis software.

In our protocol we will use a CSV post-session action to, 1) calculate and ex-

port values for stress, anxiety, and depression from the answers to the DASS

questionnaire, and 2) calculate statistics for temporal summation and conditioned

pain modulation for the pressure algometry, and 3) export other unprocessed dat-

apoints from the results of a session. Post-session actions are specified in the

¡post-actions¿ element in the Experiment Definition File, below is an abbreviated

version of the post-session action used for the experiment:

1 <post -actions >

2 <export -to-csv name="Calculate scores and export to CSV"

3 location="C:\LabBenchExport\intro"

4 header="true"

5 seperator=";"

6 culture="en -US"

7 filename="dynamic: ’{session }.csv ’. format(session =

SESSION_NAME)">

8 <item name="ID"

9 value="SESSION_NAME"

10 default="NA"/>
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11 <!-- Rest of SUBJECT questionnaire omitted for brevity -->

12 <item name="Stess"

13 value="func: Calculations.Stess(tc)"

14 default="NA"/>

15 <item name="Anxiety"

16 value="func: Calculations.Anxiety(tc)"

17 default="NA"/>

18 <item name="Depresion"

19 value="func: Calculations.Depresion(tc)"

20 default="NA"/>

21 <item name="SR01.PDT"

22 value="SR01.PDT"

23 default="NA"/>

24 <item name="SR01.PTT"

25 value="SR01.PTT"

26 default="NA"/>

27 <item name="TS"

28 value="TS[9] - TS[0]"

29 default="NA"/>

30 <item name="CPM"

31 value="CPM.PTT / SR01.PTT"

32 default="NA"/>

33 </export -to-csv>

34 </post -actions >

Listing 18: Abbreviated version of the post-session action used for exporting data

to a CSV file

The post-session action in Listing 18 uses a combination of calculated attributes

for the data points in the CSV file. Some, like the ID and SR01.PDT data points,

simply export a single value from the test context to the CSV file. The ID data

point is special. It is primarily included because CSV post-session actions can be

used in two ways. They will always be executed at the completion of a session and

will export the selected data points to a CSV file named by the calculated attribute

filename. That export will result in a CSV file with an optional header and one

row with the data points from the session. However, it can also be used from the

LabBench Designer to export all sessions to a single CSV file with an optional

header and one row for each session in the experiment. For that use, the session

ID needs to be part of the data set, and consequently, it is good practice when

writing CSV post-sessions to always include the session ID (SESSION_NAME) as one

of the exported data points as otherwise, it would not be possible to identify the

session of each row in a CSV file exported from the LabBench Designer program.

However, as the data points are generated from calculated attributes it is possible

to perform data analysis to generate the data points. This data analysis can be
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performed by single-line calculated attributes or script-calculated attributes for

more complex data analysis. The Conditioned Pain Modulation (CPM) is an

example of a single-line calculated attribute, whereas the scores for depression,

anxiety and stress are calculated by calling functions defined in a Python script.

10 Afterword

The intention of this introduction to LabBench is to provide you with the necessary

context and the purpose of all the parts you will need for describing and running

an experiment with LabBench. Consequently, it is not a comprehensive guide to

all aspects of the LabBench Language and the LabBench Software, rather, it aims

to provide you with enough context that you can study the more detailed and

technical documentation.

To fully become proficient in describing and running experiments with LabBench,

we suggest that you run the protocol described in this introduction. This protocol

is available and can be installed from the public LabBench Protocol Repository,

which is automatically added to LabBench when the program is installed. This

guide has also only described how to describe protocols in the LabBench Language

and not how to install, manage, and run them with the LabBench software.

The introduction has also glossed over some of the technical skills required to be

fully proficient in LabBench, most notably Python programming. If you want

to fully unlock the possibilities offered by LabBench you will need to know a bit

of Python programming, a skill that will also be very useful when it comes to

analysing the results of your experiments. Several excellent free learning resources

and textbooks exist for learning Python programming. We would like to direct

your attention to the following resource: Think Python, How to Think Like a

Computer Scientist by Allen B. Downey.
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